亚洲国产午夜精品av在线,日韩午夜欧美精品一二三四区,国产精品久久久久久无遮挡,欧美一亚洲一级日韩一级

歡迎來到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢熱線

13236572657

當前位置:首頁  >  技術文章  >  英國 Labplant 噴霧干燥儀在奶粉中的應用

英國 Labplant 噴霧干燥儀在奶粉中的應用

更新時間:2021-11-30  |  點擊率:2387

英國 Labplant 噴霧干燥儀在奶粉中的應用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


日本一道本一区二区三区| 亚洲精品一区二区三区五区| 亚洲乱码中文字幕久久孕妇黑人 | 在线亚洲中文精品第1页| 欧美福利电影A在线播放| 精品无码一级毛片免费冫| 国产精品宾馆在线精品酒店| 国产丝袜丝视频在线观看| 玖玖热麻豆国产精品视频| 欧美大屁屁在线观看视频| 国产精品一区二区av白丝| 久久久亚洲精品中文字幕| 日本xvedios久久| 97视频免费在线观看公开| 精品视频在线播放一起草| 午夜白嫩成熟女人的骚逼| 国产精品无码一二三视频| 久久久噜噜噜久久久久久久| 成人国产精品一区二区香蕉| 成 人 黄 片免费观看| 草草视频在线观看免费视频| 男日女一区二区三区试看| 亚洲欧美黑人在线黄大片| 日韩一区二区三区综合网| 国产欧美成人精品久久久久| yw193尤物国产精品| 亚洲欧美日韩av一区二区| 久久偷拍a视频免费播放| 99久精品中文在线视频| 被黑人强伦姧人妻完整版| 丰满少妇人妻无码10P| 日韩午夜福利片段在线观看| 加勒比一区二区三区91| 精品中文字幕版在线播放| 无码人妻丰满熟妇区bbbbxxxx| 国产无码不卡 在线观看| 欧美人与牲禽动交精品三级| 欧美日韩一区二区啪啪啪| 一区二区三区 久久久久| 天堂在线观看www| 国产精品爱搞视频网网址|